
MathInf

Thomas Viehmann
tv@mathinf.eu

Hacking Machine Learning Munich, 26 June 2018



About me

MathInf
• Thomas Viehmann

• Mathematical modeller

• Ph.D. in Mathematics (Bonn) – Mathematical proof of
fractal behaviour in a model for magnets

• Actuary and consultant for 9 years - helping insurance
companies with their maths for financial and risk
modelling, statistics etc.

• Hacker: Developer emeritus,
contributed some 30 features and bugfixes to

• Founded consultancy MathInfGmbH in May 2018.

• Core ML interests: Models that are aware of uncertainty, explaining
model outputs, NLP, GANs, how to learn and teach AI

• ML blog: https://lernapparat.de/

https://lernapparat.de/


About MathInf
MathInf

Mission:

Helping companies build better AI through mathematical modelling

Make AI reliable:

• Models that are aware of uncertainty

• Explaining model outputs

→ more details another day
Modelling focus:

• Natural Language Processing

• Customizing models from various domains

• General statistical modelling (e.g. for insurance)

• “Classical” actuarial / financial modelling

https://mathinf.eu/

https://mathinf.eu/


Why Handwriting Generation?
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Handwriting font� onl� g� s� far

So what does it take to make the computer write?
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Handwriting Generation

MathInf
Article: Alex Graves, Generating Sequences With Recurrent Neural
Networks, https://arxiv.org/abs/1308.0850

This is 5 years old, why study this?

• Instructive example for probabilistic modelling for training / prediction

• Much simpler than Seq2Seq etc. but has many of the important
techniques

• Very simple attention model

→ Great insights / chores ratio

Graves’s paper also discusses text generation as made very popular by A. Karpathy’s

Unreasonable Effectiveness of RNNs blog post.

https://arxiv.org/abs/1308.0850
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Dataset

MathInf
Typical dataset: IAM Online Handwriting Database.1, 9950 lines

Online = We get a series of coordinates of the strokes as they are written,
rather than a picture of the handwriting itself.

Preprocessing:

• Instead of strokes and absolute coordinates, convert
them to (relative) pen movements and a flag (pen up
/ pen down).
→ makes the series stationary

• Some mild cleaning

• Standardize to mean 0 and standard deviation 1 in x
and y (separately).

Text: I like computers....

Stroke: (∼ 700 rows)
x y pen

-0.20 -0.00 0
0.16 0.68 0
-0.20 0.19 0
-0.20 0.41 0
-0.23 0.66 0
-0.27 0.73 0
-0.28 0.91 0
-0.30 0.98 0
-0.30 1.04 0
-0.30 1.02 0
-0.30 0.97 0
-0.31 0.88 0
-0.29 0.75 1
6.26 -7.52 0
-0.24 0.21 0
... ... ...

1
http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database

http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database


Input and Output for Training and Prediction

MathInfFor sequence-generating RNNs, the distinction between training
and prediction becomes more apparent:
Training
score next output based on model density (loss = negative log likelihood)

Prediction
draw sample from model distribution and feed as next input
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Loss functions?

MathInf
Real valued data x , y – could we just use squared Euclidean distance?

How would the predictions look like?
What to do with the pen?

Enter probabilistic modelling:
Instead of directly outputting quantities, use NN to output parameters of
probability distributions.

Joint normal distribution for x , y .
Pen as a Bernoulli variable with probability p
⇒ training: negative log likelihood; prediction: sample

Final twist: Use blend of Gaussian
distributions with weights also given
by NN, Mixture Density Networks, to
capture different modes (within
letter, next letter, next word). Superimposed density plot

https://www.microsoft.com/en-us/research/publication/mixture-density-networks/
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Attention

MathInfSo far, we haven’t talked about what we want to write!2

Typical thing to do: Take one-hot encoded sequence of characters.
Cannot feed it all at once and the timestep is not the character.
⇒ Use attention mechanism3 - RNN looks at one character at a time:

• Position i starting with i = 0. Feed character at i to the RNN

• RNN in turn outputs how much to advance i for next prediction

• (use soft version to enable gradient descent and a mixture model)

x-axis: time (points)
y-axis: i word attention

2Indeed, Graves also does “freestyle” (unconditioned) handwriting in the paper.
3This is a bit different from “query-based” attention that is a cornerstone of modern

sequence processing.
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Putting it all together
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Step t Step t+1 Step t+2

(X,Y,Pen)(t-1)

Text

LSTM

w(t-1)

Attention Attention Attention

h(t)

Mixture Density

(X,Y,Pen)(t)

predict

w(t)

LSTM

h(t+1)

Mixture Density

(X,Y,Pen)(t+1)

predict

w(t+1)

LSTM

h(t+2)

Mixture Density

(X,Y,Pen)(t+2)

predict

w(t+2)

RNN Layer

RNN output

Attention weighted
character vector

Probabilistic model

Input / Output data

Graves also has a three layer model with Bayesian regularization

(Variational Bayesian in today’s terms).



Training

MathInfStandard technique: “Teacher forcing” - feed target sequence as
inputs rather than actual output.

• Smoothed loss is ∼ 1200, similar to what Graves reports.

• I ran the model for 50 epochs. Each epoch takes 4.5 minutes on a
GTX1080, so < 4 hours total.

• Source (Jupyter Notebook with PyTorch) and pretrained model
available at
https://lernapparat.de/handwriting-generation-rnns/

https://lernapparat.de/handwriting-generation-rnns/


Enjoy
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Let the model draw the text you give it:

You can bias the predictions towards their mean value to get “cleaner”
handwriting:

Graves has more examples, including “priming”: Feed a bit of training input first, then

the RNN will imitate the style of the training input in further predictions.



Summary

MathInfIn implementing the handwriting generation RNN, we used

• typical RNN setup for training / prediction,

• probabilistic modelling,

• a prototype of attention.

Great things to try out:

• weight dropout / Variational Bayes techniques to mimic
MDL-regularization,

• multi-layer RNN,

• extend to SketchRNN – which is similar to a typical seq2seq model
with encoder and decoder but uses many similar ideas as the
handwriting RNN.

Do checkout the original Graves paper, it is very well written.



MathInf

Source code and slides at
https://lernapparat.de/handwriting-generation-rnns/

https://lernapparat.de/handwriting-generation-rnns/
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